WELDING INSPECTION TECHNOLOGY WORKBOOK

MODULE 6

METAL PROPERTIES AND DESTRUCTIVE TESTING

Welding Inspection Technology Workbook

Module 6—Metal Properties and Destructive Testing

For conversion Factors, refer to "Conversion Chart for Common Welding Terms" on page 10-9 of the workbook and for Formulae refer to page 10-8.

- **Q6-1** The property of metals that describes their resistance to indentation is called:
 - a. strength
 - b. toughness
 - c. hardness
 - d. ductility
 - e. none of the above
- **Q6-2** The property of metals that describes their ability to carry a load is:
 - a. strength
 - b. toughness
 - c. hardness
 - d. ductility
 - e. none of the above
- **Q6-3** Generally, as strength increases for carbon steels, the ductility:
 - a. increases
 - b. stays the same
 - c. decreases
 - d. is not related to strength
 - e. none of the above
- **Q6-4** The property that describes the ability of a metal to deform when stressed is:
 - a. strength
 - b. toughness
 - c. hardness
 - d. ductility
 - e. none of the above
- **Q6-5** The type of strength related to a metal's behavior when the load is applied in a cyclic manner is:
 - a. tensile
 - b. compressive
 - c. torsional
 - d. impact
 - e. fatigue
- **Q6-6** The yield strength of a material is determined by:
 - a. impact testing
 - b. tensile testing
 - c. hardness testing
 - d. the offset method
 - e. b and d above

STD.AUS WIT-W-99-ENGL 1999 🗰 0784265 0514662 T98

Welding Inspection Technology Workbook Module 6—Metal Properties and Destructive Testing

Q6-7 Which metal properties are directly related?

- a. conductivity and strength
- b. strength and ductility
- c. strength and hardness
- d. ductility and toughness
- e. c and d above

Q6-8 The ability of a metal to absorb energy is called:

- a. strength
- b. ductility
- c. hardness
- d. toughness
- e. none of the above

Q6-9 The metal property affected by the surface condition of the sample is:

- a. tensile strength
- b. UTS
- c. hardness
- d. fatigue strength
- e. all of the above

Q6-10 Which alloying element is generally considered to have the most pronounced effect on the properties and performance of carbon steel?

- a. aluminum
- b. carbon
- c. manganese
- d. chromium
- e. none of the above

Q6-11 Which alloying element is commonly added to steel to improve its corrosion resistance?

- a. carbon
- b. aluminum
- c. silicon
- d. chromium
- e. none of the above

Q6-12 Hydrogen in the molten weld metal can cause:

- a. undercut
- b. overlap
- c. cracking
- d. porosity
- e. c and d above

TO 344663 0514663 924

Welding Inspection Technology Workbook Module 6—Metal Properties and Destructive Testing

Q6-13	Which	property	cannot	be	determined	from	a tensile	test?
-------	-------	----------	--------	----	------------	------	-----------	-------

- a. ultimate tensile strength
- b. percent elongation
- c. percent reduction of area
- d. impact strength
- e. yield strength

Q6-14 A metal's ductility can be expressed as:

- a. percent elongation
- b. percent reduction of area
- c. proportional limit
- d. a and b above
- e. b and c above

Q6-15 A tensile specimen having a cross sectional area of 0.25 square inch breaks at a load of 15,250 pounds. What is its tensile strength? (Tensile Strength = Load/Area)

- a. 3813 psi
- b. 61,000 psi
- c. 6,100 psi
- d. 58,500 psi
- e. none of the above

Q6-16 The point at which a metal's behavior changes from elastic to plastic (onset of permanent deformation) is referred to as:

- a. yield strength
- b. ultimate tensile strength
- c. modulus of elasticity
- d. Young's modulus
- e. none of the above

Q6-17 What is the percent elongation of a specimen whose original gauge length was 2 inches and final gauge length was 2.5 inches?

- a. 30%
- b. 25%
- c. 50%
- d. 40%
- e. none of the above

Q6-18 The family of hardness tests that uses both a minor and major load is called:

- a. Brinell
- b. Vickers
- c. Rockwell
- d. Knoop
- e. none of the above

STD.AUS WIT-W-99-ENGL 1999 🗰 0784265 0514664 860 |

Welding Inspection Technology Workbook Module 6-Metal Properties and Destructive Testing

Q6-19 Which of the following tests are referred to as microhardness tests?

- Rockwell a.
- Vickers b.
- c. Knoop
- d. a and b above
- e. b and c above

Q6-20 What type of test uses a weighted pendulum which strikes a notched test specimen?

- Brinell test a.
- b. fatigue test
- c. tensile test
- d. microhardness test
- Charpy impact test e.

Q6-21 Endurance limit is an expression used for what type of testing?

- fatigue a.
- b. hardness
- soundness c.
- d. tension
- e. none of the above

Q6-22 The metal property that relates to a metal's deforming without failing is called:

- a. tensile strength
- b. ductility
- c. hardness
- d. toughness
- none of the above e.

Q6-23 Which test is not considered a soundness test?

- hardness a.
- b. face bend
- c. fillet break
- d. root bend
- nick break e.

Q6-24 The type of testing used to evaluate the type of microstructure present in a metal is called:

- tensile a.
- b. hardness
- toughness c.
- d. metallographic
- none of the above e.

STD.AWS WIT-W-99-ENGL 1999 - 0784265 0514665 7T7

Welding Inspection Technology Workbook Module 6—Metal Properties and Destructive Testing

Q6-25	Which o	of the	following	tests can	be used	to judge	e the	soundness	of a	weld?
-------	---------	--------	-----------	-----------	---------	----------	-------	-----------	------	-------

- a. nick break
- b. side bend
- c. face bend
- d. fillet break
- e. all of the above

Q6-26 Which of the following tests will generally be used to determine the behavior of a metal at a specific temperature?

- a. guided-bend test
- b. root-bend test
- c. Charpy impact test
- d. transverse fillet weld shear test
- e. all of the above

Q6-27 With respect to the rolling direction of steel plate manufacture, which statement is true?

- a. The strength is highest in the 'Z'direction.
- b. The strength is lowest in the 'X' direction.
- c. The strength is highest in the 'X' direction.
- d. The strength is highest in the 'Y' direction.
- e. The strength is lowest in the 'Y' direction

Q6-28 The fillet weld break test is used to evaluate the:

- a. quality of the fractured weld
- b. ductility of the weld metal
- c. impact strength of the weld
- d. tensile strength of the base metal
- e. none of the above

Q6-29 The welding inspector is not concerned with the mechanical and chemical properties of metals.

- a. true
- b. false

Q6-30 For plain carbon steels, their approximate tensile strength can be estimated by multiplying their BHN by:

- a. 400
- b. 300
- c. 100
- d. 200
- e. 500

Q6-31 Notch toughness and impact strength are not synonymous.

- a. true
- b. false

TD.AUS WIT-W-99-ENGL 1999 0784265 0514666 633

Welding Inspection Technology Workbook Module 6—Metal Properties and Destructive Testing

Q6-32	Phosphorus	and sulfur a	re added to	carbon steel	to improve:
-------	------------	--------------	-------------	--------------	-------------

- a. ductility
- b. toughness
- c. weldability
- d. impact strength
- e. none of the above

Q6-33 To improve the low temperature properties of carbon steels, the most likely alloy addition would be:

- a. manganese
- b. carbon
- c. nickel
- d. chromium
- e. none of the above

Q6-34 Hydrogen, oxygen, and nitrogen can all cause embrittlement in carbon steels.

- a. true
- b. false

Q6-35 Gauge marks on a tensile specimen are:

- a. scratches caused by improper handling
- b. marks caused by using a gage to measure sample area
- c. spaced a set distance apart
- d. used for calculating percent elongation
- e. c and d above

Q6-36 The 'offset method' is used for determining which property?

- a. yield strength
- b. tensile strength
- c. hardness
- d. fatigue strength
- e. impact strength

Q6-37 Surface preparation is not an important step in destructive testing.

- a. true
- b. false

Q6-38 The Brinell hardness test is always a destructive test.

- a. true
- b. false

STD.AUS WIT-W-99-ENGL 1999 - 0784265 0514667 57T

Welding Inspection Technology Workbook Module 6—Metal Properties and Destructive Testing

Q6-39 In Charpy testing, the test temperature is:

- a. not important
- b. very important
- c. not considered
- d. never reported
- e. none of the above

Q6-40 In Charpy testing, the test data can be reported as:

- a. foot pounds energy absorbed
- b. lateral expansion
- c. percent shear
- d. all of the above
- e. offset data

Q6-41 The objective of the guided bend test is to break the sample.

- a. true
- b. false

ANSWER KEY-MODULE 6

Q6-1	c	(pg. 6-5)
Q6-2	a	(pg. 6-1, 2)
Q6-3	c	(pg. 6-1-4)
Q6-4	d	(pg. 6-3)
Q6-5	e	(pg. 6-6, 7)
Q6-6	e	(pg. 6-14, 18, 19)
Q6-7	e	(pg. 6-3–5)
Q6-8	d	(pg. 6-5)
Q6-9	e	(pg. 6-1-7)
Q6-10	b	(pg. 6-9)
Q6-11	d	(pg. 6-10)
Q6-12	e	(pg. 6-12)
Q6-13	d	(pg. 6-14)
Q6-14	d	(pg. 6-20)
Q6-15	b	(pg. 6-15)
Q6-16	a	(pg. 6-2)
Q6-17	b	(pg. 6-19)
Q6-18	С	(pg. 6-22)
Q6-19	e	(pg. 6-23)
Q6-20	e	(pg. 6-27)
Q6-21	a	(pg. 6-31)
Q6-22	b	(pg. 6-3)
Q6-23	a	(pg. 6-28)
Q6-24	d	(pg. 6-32)
Q6-25	e	(pg. 6-28–31)
Q6-26	C	(pg. 6-26–28)
Q6-27	C	(pg. 6-4)
Q6-28	a	(pg. 6-30, 31)
Q6-29	b	(pg. 6-32)
Q6-30 Q6-31	e	(pg. 6-20)
Q6-32	b	(pg. 6-4, 5) (pg. 6-8)
Q6-33	e	(pg. 6-11)
Q6-34	c a	(pg. 6-11) (pg. 6-12)
Q6-35	e	(pg. 6-12)
Q6-36	a	(pg. 6-18)
Q6-37	b	(pg. 6-14)
Q6-38	b	(pg. 6-20)
Q6-39	b	(pg. 6-27, 28)
Q6-40	d	(pg. 6-27)
Q6-41	b	(pg. 6-28, 29)
	•	(10)