Hydrostatic test with Flange Joints (considering of Flange MAWP)

As a common hydrostatic test procedure, the test pressure will be taken from the piping system MAWP.  Depending on the primary code applied, the test pressure can be 1.5 MAWP, or 1.3 MAWP + factors, or 1.15 MAWP… etc., Refer to What is MAWP, What is Max operation pressure, Hydrostatic test: What is the MAWP of the pressure vessel (ASME VIII) FITTING PRESSURE RATING PIPE PRESSURE RATING PIPING HYDRO-STATIC TEST COMPREHENSION Test Pressure vs MAWP (ASME VIII) Design Pressure Vs MAWP (API, ASME) MAWP is normally referred to as system maximum allowance working pressure. The fitting is small and is … Continue reading Hydrostatic test with Flange Joints (considering of Flange MAWP)

Guide to flange raised face repaired by machining.

Take a look at the requirements of the height of raised face as per ASME B16.5: ASME B16.5 Flange – Regular Raised Face Height Typically, the height of Raised Face of ASME B16.5 Flange is divided by Flange Class by: 1- Flange Class 150 and 300 which have the Raised Face Height around 2mm. 2- Flange Class 400 and above have Raised Face Height around 7mm. When damage occurs on Flange’s Raised Face, the method to repair without welding works as per ASME PCC-2 can be done by machine, removing the damaged parts and refinishing the Raised Face again. Then do MT … Continue reading Guide to flange raised face repaired by machining.

Orifice Installation Matter in the piping system

Regarding What is Orifice and its application, please refer to FLOW METER AND ORIFICE PLATE Introduction of Erosion on Piping downstream around Orifice installation area: Typical erosion in piping systems often occurs on the flow with the exclusion of turbulence, for example. Where the flow direction changes (elbow, tee) or downstream of the orifice in the pipe system. In addition, Flow is a two-phase (with solid or liquid particles) and has a higher speed of erosion. In the Orifice installation area, the Flow Orifice (FO) is used to block the flow and reduce the pressure of Steam down to allow it to become condensate, but since Steam has passed from Orifice that cannot be fully condensed in this area, the turbulence of Flow will exist.     Continue reading Orifice Installation Matter in the piping system

Thermal Expansion affections in Piping system

Linear Thermal Expansion of Pipping; One factor that must be considered in the design of the piping system is Piping Flexibility. Because our pipes will stretch itself when the temperature is increased, and shrink when the temperature is dropped. Therefore, our piping system must be flexible or able to move back and forth sufficiently to support elongation or shrinkage of pipe. In ASME B31.3 Process Piping Design determines the Linear Thermal Expansion of each material. To be used to calculate how much piping will stretch or shrink according to how much temperature has changed. The values ​​in Table C-2 measure … Continue reading Thermal Expansion affections in Piping system

What is Mock-up test for In-service Welding

Following the concerns of welding defects for in-service maintenance hot works, the Mock-up test should be performed to increase the confidence level of works. See this: In-service and maintenance welding defects Mock-Up Testing ;  This comes at a Mock-up Testing for In-service welding or welding On-stream … For onstream welding, while there is fluid flowing inside the pipe or equipment The most important is the safety that is not going to burn through the weld and weld it must not happen Hydrogen cracking (HIC) according to the method used to prove that the simulated welding or the Mock-up test.  In conducting a mock-up test, the workpiece must look like or represent the actual work in the matter including:  (1) Type ( Material Spec.), and the thickness of … Continue reading What is Mock-up test for In-service Welding

In service and maintenance welding defect

In-Service Welding Concerns;  When welding, repairing or modifying pipelines or equipment that are currently being used (In-Service), the most worrying is the leak of the fluid inside. While or after doing On-line Welding. The two main reasons that cause the leak are: Burn Through: While welding at the melting area of ​​the welding, the strength will be reduced. We may not be able to withstand the Pressure at  Service value. Weld Cracking or Hydrogen Induced Cracking (HIC) from welding. The additional concern in welding is the cooling rate. Since the inside of the pipe or equipment has fluid flow, it may … Continue reading In service and maintenance welding defect

What is Vibration induce cracking

Vibration Induced Fatigue;  Vibration Induced Fatigue is a form of fracture due to fatigue, mechanical (of mechanical Fatigue) due to Dynamic load caused by vibration ( with Vibration) had done so at the risk of Vibration Induced Fatigue is a point there. High stress and severe shaking points. This type of damage is usually found at the small branch connections of Pressure Vessel and Piping, which are naturally high-stress points because they are discontinuous (see Stress Analysis) and are the receiving points. Vibrating force Thus, if the Support inadequate and the Small Branch Connection with Vibration ( for example, near … Continue reading What is Vibration induce cracking

What is Vortex Breaker

Vortex in Vessels;  Vortex, or vortex in Vessels, is the rotation of a liquid’s core while releasing or transferring liquid from Vessels. This appears to be caused by the Earth’s rotation. Vortex can be easily observed. In everyday life, such as flushing the toilet Releasing water from the sink or bathtub Vortex in Vessels will take gas or vapor into the liquid stream that is transferred out. This will make the refining process less efficient, the system has more pressure drop, causing Erosion from the two-phase flow at the nozzle or pipe connecting to the vessel and causing cavitation at … Continue reading What is Vortex Breaker

What is Soil Corrosion

Soil to Air Interface – Zone of Corrosion on API 570 Piping; The area where the pipelines fall underground, or soil-to-air interface, is the area that has a high chance of external corrosion if Wrapping or Coating is damaged. Due to the difference in temperature, humidity and oxygen in the area, the API 570 stipulates that 6 inches above and 12 inches below the soil surface is the Soil-to-air Interface zone that should be Reviewed. Inspection of Soil-to-air Interface for Underground Piping;  For example, to monitor underground pipes ( Underground, Piping) in a pipe underground or Soil-to-air Interface by digging tube down … Continue reading What is Soil Corrosion