Guide to flange raised face repaired by machining.

Take a look at the requirements of the height of raised face as per ASME B16.5: ASME B16.5 Flange – Regular Raised Face Height Typically, the height of Raised Face of ASME B16.5 Flange is divided by Flange Class by: 1- Flange Class 150 and 300 which have the Raised Face Height around 2mm. 2- Flange Class 400 and above have Raised Face Height around 7mm. When damage occurs on Flange’s Raised Face, the method to repair without welding works as per ASME PCC-2 can be done by machine, removing the damaged parts and refinishing the Raised Face again. Then do MT … Continue reading Guide to flange raised face repaired by machining.

Orifice Installation Matter in the piping system

Regarding What is Orifice and its application, please refer to FLOW METER AND ORIFICE PLATE Introduction of Erosion on Piping downstream around Orifice installation area: Typical erosion in piping systems often occurs on the flow with the exclusion of turbulence, for example. Where the flow direction changes (elbow, tee) or downstream of the orifice in the pipe system. In addition, Flow is a two-phase (with solid or liquid particles) and has a higher speed of erosion. In the Orifice installation area, the Flow Orifice (FO) is used to block the flow and reduce the pressure of Steam down to allow it to become condensate, but since Steam has passed from Orifice that cannot be fully condensed in this area, the turbulence of Flow will exist.     Continue reading Orifice Installation Matter in the piping system

What is Mock-up test for In-service Welding

Following the concerns of welding defects for in-service maintenance hot works, the Mock-up test should be performed to increase the confidence level of works. See this: In-service and maintenance welding defects Mock-Up Testing ;  This comes at a Mock-up Testing for In-service welding or welding On-stream … For onstream welding, while there is fluid flowing inside the pipe or equipment The most important is the safety that is not going to burn through the weld and weld it must not happen Hydrogen cracking (HIC) according to the method used to prove that the simulated welding or the Mock-up test.  In conducting a mock-up test, the workpiece must look like or represent the actual work in the matter including:  (1) Type ( Material Spec.), and the thickness of … Continue reading What is Mock-up test for In-service Welding

In service and maintenance welding defect

In-Service Welding Concerns;  When welding, repairing or modifying pipelines or equipment that are currently being used (In-Service), the most worrying is the leak of the fluid inside. While or after doing On-line Welding. The two main reasons that cause the leak are: Burn Through: While welding at the melting area of ​​the welding, the strength will be reduced. We may not be able to withstand the Pressure at  Service value. Weld Cracking or Hydrogen Induced Cracking (HIC) from welding. The additional concern in welding is the cooling rate. Since the inside of the pipe or equipment has fluid flow, it may … Continue reading In service and maintenance welding defect

What is Valve Trim

Valve Trim;  Valve Trim is a name for Valve ‘s Internal Parts that come into contact with Process Fluid and be Worn. The deterioration caused by the use of Valve Trim can be replaced (Replaceable), including Seat, Disc, Stem, Bushing, and others. The parts of Valve that are considered Valve Trim will depend on the type of Valves in the table. Meanwhile, the Body, Yoke, and Bonnet are not considered. Valve Trims Standard: (API 600)   Continue reading What is Valve Trim

Elbow corrosion in the piping system

When we find that Erosion or Erosion-Corrosion Occurs in our piping system. Elbow area is one of the points where Flow hits and causes Erosion / Erosion-Corrosion. The simple way of looking at the wear (Eroded) or the thickness of the Elbow lost (Local-Thin Area) is the Grid UTM (Ultrasonic Thickness Measurement). This method will. This allows us to obtain both the profile of the remaining Elbow thickness and the ability to find the lowest thickness in the area by looking at the Thickness Profile obtained.   In another example of the Grid UTM area Outside radius of Elbow before the … Continue reading Elbow corrosion in the piping system

Slip-on Flange ASME B31.3 limitation

Slip-on Flanges Limits per ASME B31.3;  In the ASME B31.3 Piping Code, restrictions on slip-on flanges are specified as follows:  Use welding Double-Welded for  Service that causes Severe erosion, Crevice corrosion, and Cyclic loading  Service that is combustible, toxic and harmful to people  Service at temperatures below -101 C 2. Do not Slip-on Flanges with Service with high pressure than ASME B16.5 Flange Class 2500. 3. Avoid  Slip-on Flanges with  Service that changes the temperature up – downtime (, Many the Large Temperature Contact of Cycle), especially with  Flanges are not covered  Insulation, which will cause a change in the temperature of the  Flange and.  Pipe quickly and may lead to thermal fatigue cracking … Continue reading Slip-on Flange ASME B31.3 limitation

Corrosion Rate calculation for pressure vessel and piping (API 510, 570)

Corrosion Rate for New Vessel and Service Change per API 510;  According to API 510, “Corrosion Rate” for Pressure Vessel to be reinstalled or Pressure Vessel is changed. Service Conditions can be obtained. Use the Corrosion Rate of the Vessel that has the same or similar Service Condition The Corrosion Specialist is the person who estimates Or estimates the value from the published data such as API 581. Use the double thickness measurement to calculate the corrosion rate by the first time after the Vessel service for 3-6 months and the second time according to the appropriate period so that the value can be estimated Corrosion Rate.     Corrosion Rate for New Piping and Service Change … Continue reading Corrosion Rate calculation for pressure vessel and piping (API 510, 570)

What is Soil Corrosion

Soil to Air Interface – Zone of Corrosion on API 570 Piping; The area where the pipelines fall underground, or soil-to-air interface, is the area that has a high chance of external corrosion if Wrapping or Coating is damaged. Due to the difference in temperature, humidity and oxygen in the area, the API 570 stipulates that 6 inches above and 12 inches below the soil surface is the Soil-to-air Interface zone that should be Reviewed. Inspection of Soil-to-air Interface for Underground Piping;  For example, to monitor underground pipes ( Underground, Piping) in a pipe underground or Soil-to-air Interface by digging tube down … Continue reading What is Soil Corrosion